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SUMMARY

A hybrid finite difference and vortex method (HFDV), based on the domain decomposition method
(DDM), is used for calculating the flow around a rotating circular cylinder at Reynolds number
Re=1000, 200 and the angular-to-rectilinear speed ratio a� (0.5, 3.25) respectively. A fully implicit
third-order eccentric finite difference scheme is adopted in the finite difference method, and the deduced
large broad band sparse matrix equations are solved by a highly efficient modified incomplete LU
decomposition conjugate gradient method (MILU-CG). The long-time, fully developed features about
the variations of the vortex patterns in the wake, as well as the drag and lift forces on the cylinder, are
given. The calculated streamline contours are in good agreement with the experimentally visualized flow
pictures. The existence of the critical state is confirmed again, and the single side shed vortex pattern at
the critical state is shown for the first time. Also, the optimized lift-to-drag force ratio is obtained near
the critical state. Copyright © 1999 John Wiley & Sons, Ltd.

KEY WORDS: finite difference method; incomplete LU decomposition; preconditioned conjugate gradient method;
rotating circular cylinder; vortex method; vortex pattern

1. INTRODUCTION

The unsteady flow around a rotating circular cylinder is a typical kind of complex fluid flow.
It includes many complicated flow phenomena, such as the unsteady boundary layer separa-
tion, the generation and shedding of vortices, and their interactions with wakes, etc. The
rotation of a circular cylinder about its axis will decrease and suppress the flow separation and
vortex shedding on one side of the cylinder, while increase and develop them on another side.
A transverse lift force will act on the cylinder, and this phenomenon is called the Magnus
effect. The most important parameter for the case is the angular-to-rectilinear speed ratio a

(=Va/U�, where V is the angular speed of the cylinder, a is the radius of the cylinder and U�
is the ambient flow velocity at infinity). The variation of a will effectively change the vortex
pattern in the wake, as well as the drag and lift forces on the cylinder. One of the important
objectives in current flow control research is to study the effect of cylinder rotation, to which
great attention has been paid by many fluid mechanists world-wide.

Early research works were only for flow regions with small a and low Reynolds number Re
(=U�·2a/n, where n is the kinetic viscosity of the fluid). Since the 1980s, a series of
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experimental [1–3] and numerical [3–6] studies have been carried out for some flow regions
with larger a and higher Re. However, there are some issues regarding whether the vortex
shedding will be suppressed and disappear completely while the flow is approaching steady. It
has been shown [5] that the rotation does not suppress vortex shedding, even for Re=200,
a=3.25. After the first main vortex (i.e. the initial starting vortex), the second and third (and
so on) vortices also shed from the same side of the cylinder (called the single side vortex
shedding). This contradicts the experimental results of [1], which indicate that after the first
main vortex, the flow tends to be steady and the vortex shedding disappears completely.
Recently, a systematic numerical study on the flow around a rotating circular cylinder for
Re=1000, a� (0.5, 6) was preformed [7], the results of which support the conclusions in [1], but
do not give more details about the flow characters at the critical states.

The vortex method (VM) and the finite difference method (FDM) are the two major
methods for numerical simulation of a bluff body’s separated flow. The VM can effectively
predict the global features of unsteady separated flow and the flow field structures away from
the vorticity layer. But in the boundary layer or the shear layer, where viscous effects dominate
convective effects, the diffusion of vorticity is usually simulated by the random walk of vortices
in the method, and the fluctuations in numerical results are inevitable. In order to improve the
precision of the computation, some smooth techniques must be introduced, especially in
predicting the flow separation and vorticity distribution near or on the body surface.
Meanwhile, the number of vortices must be very large. This will greatly increase the size of the
computation. This difficulty can be overcome by the vortex-in-cell method (VIC), which
reduces the size of the computation from the order of O(N2) (N is the number of vortices) to
O(N log2 N). Another drawback of the VM is that boundary conditions cannot be easily
prescribed. In the near-wake of the bluff body, due to the reverse flow, some discrete vortices
may cross the body surface during a time step. How to deal with these vortices is somewhat
arbitrary. Conversely, the FDM can efficiently yield very precise results for the N–S equations
at moderate Reynolds numbers, with various forms of boundary conditions; especially in the
regions where viscous effects dominate convective effects. But when the Reynolds number
increases, the number of nodes will rapidly increase, and the cost of the computation will be
impractically high. In addition, there are still some theoretical problems to be solved in the
finite difference solution to the flow at high Reynolds numbers.

After considering both the advantages and existing problems of the two methods mentioned
above, a hybrid finite difference and vortex method (HFDV), based on the domain decompo-
sition method (DDM), is adopted. The similar method, the so-called the partial-grid domain
decomposition method or the partical-grid superposition method, was first proposed by Cottet
[8], then developed by Guermond [9] and Chou [10] in successfully calculating the bluff body
separated flows. But the methodology used here was proposed by the author [11], which is
similar to work of Guermond. The flow field is divided into two domains: the inner domain
and the outer domain. In the inner domain, the FDM is adopted. It can precisely treat the fine
structures of the near-wake flow, and the amount of computation is moderate because the
calculation region is restricted to the close neighborhood of the body. In the outer domain, the
VIC method is used. It can effectively deal with the far-wake flow, where the viscosity is not
dominant, and can be even neglected, especially at high Reynolds numbers. In the computation
results, the fluctuation caused by the random walk of vortices is limited, and the difficulty
caused by vortices crossing the body surface does not exist. Therefore, this hybrid combination
of the finite difference and vortex methods has the advantages of both methods, while avoiding
their defects. This method has been successfully applied to calculate the impulsively started
flow [11,12] and the oscillating flow [13,14] around a circular cylinder.
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When the flow complexity increases, more effective, stable and accurate numerical methods
must be developed. Finer grids and higher-order implicit difference algorithms should be
adopted. It will produce a kind of large broad band (more than three diagonals) matrix
equations. For these equations, some traditional methods in CFD, such as the ADI, LSOR or
SIP methods, are not valid or efficient any longer. An advanced, effective conjugate gradient
method with modified incomplete LU decomposition as preconditioner (MILU-CG) is
adopted instead. It can quickly solve the broad band matrix equations, and no alternate
directional iteration process is needed. It is one of the most updated algorithms in large-scale
scientific and engineering computations [15]. The MILU-CG method combined with the
modified HFDV method is used for calculating the flow around a rotating circular cylinder at
Re=1000, 200, a� (0.5, 3.25) for studying the variation rules of vortex patterns and forces in
long-time periods, from the start to fully developed. The calculated streamline contours are in
good agreement with the experimentally visualized flow pictures. The existence of the critical
state is confirmed again, and the single side shed vortex pattern at the critical state is given for
the first time. The maximum lift-to-drag force ratio is also determined near the critical states.

2. MATHEMATICAL MODEL

An incompressible and viscous fluid, with a uniform velocity U� at infinity, is assumed to flow
around a circular cylinder of radius a in the x-direction (see Figure 1). The cylinder rotates
about its axis in the counter-clockwise direction with an angular velocity V. A polar
co-ordinate system, whose origin coincides with the center of the cylinder, is chosen.

The dimensionless variables t, r, (Vr, Vu), c and v are obtained by being divided by a/U�,
a, U� U�a and U�/a respectively. The dimensionless governing equations of the flow, in terms
of vorticity (v) and streamfunction (c), are as follows:
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where Vr=(c/r (u, Vu= −(c/(r are the radial and peripheral velocities respectively.

Figure 1. Flow sketch and domain decomposition.
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In order to have finer meshes in the vicinity of the cylinder surface, a log–polar co-ordinate
system is introduced, i.e. r=exp(2pj), u=2ph. The dimensionless governing equations of the
flow then change to:
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where E=4p2 exp(4pj), U=(c/(h=E1/2Vr and V= −(c/(j=E1/2Vu.
On the surface of the cylinder, the no-slip condition of impermeable wall must be satisfied,
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and at infinity, the influence of rotation on the flow field can be neglected,
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The initial condition is

v �t=0=0, j\0. (7)

After the vorticity distribution in the field is obtained from Equations (3)–(7), one can
deduce the distributions of the pressure and shear stress on the cylinder surface, as well as the
drag and lift force coefficients Cd and Cl,
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3. NUMERICAL METHODS

3.1. The domain decomposition method

The entire flow field is decomposed into two domains: the inner domain V1, which is close
to the body surface, and the outer domain V2, which covers the rest of the field. The interface
between V1 and V2 is I, as shown in Figure 1.
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The flow in the inner domain V1 is viscous-dominant, where the flow separation and vortex
shedding occur. In V1, the variation of vorticity and the flow field are determined by the N–S
equation and the Poisson equation about streamfunctions with corresponding initial and
boundary conditions. The FDM is used for calculating the flow field. In domain V2, the flow
is assumed to be approximately inviscid. The convection of the vortex is calculated by the
discrete vortex model and the VIC method. The vorticity is conserved when the vortex is in
motion. The velocity of the motion is given by the Poisson equation.

The flows in the two domains are coupled through the interface I, and will be solved
simultaneously. The outer domain gains the newly generated discrete vortex from the vorticity
flux passing across the interface, which serves as the added source term at each time step for
solving the vortex motion in this domain. In solving the flow field of the inner domain, the
boundary conditions of v and c at the interface are given by interpolating the corresponding
values on nodes near the interface.

The inner domain is bounded in the range of r=O(a). This range may be determined
flexibly through numerical tests according to the accuracy required when describing the fine
structure of the flow and the size of the computation. In this computation, the interface
between the inner and outer domains is located at r#3a (following [11]).

3.2. The finite difference method

In domain V1, the flow field is calculated by a predictor–corrector type of FDM. At the
prediction stage, the value of v at the (n+1

2)th time step, v (n+1/2), is obtained by solving the
Equation (3) with the values of v, U and V at the (n)th time step, v (n), U (n) and V (n). Equation
(3) is discretized by using of the first-order upwind difference scheme for the convection terms
and the second-order central difference scheme for the viscous terms. Having got v (n+1/2), one
can calculate the value of c (n+1/2) by using Equation (4) and then the values of U (n+1/2) and
V (n+1/2), where Equation (4) is discretized by the second-order central difference scheme also.
The traditional alternating direction implicit (ADI) method and the line successive overrelax-
ation (LSOR) method are used in calculating Equations (3) and (4) respectively. Here, the
coefficient matrices of the deduced finite difference equations are three-diagonal, so the
computation is rapid, but the precision is only of first-order in time and first- or second-order
in space. The reason why the algorithms mentioned above were used as the predictor is that
the computer codes have already operated effectively in previous works by the authors [11,12].

At the correction stage, the third-order eccentric finite difference scheme is adopted for the
convection terms of Equation (3). For example, the discrete form of (/(j (Uv) is as follows:

(

(j
(Uv)
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Ui, j\0,
Ui, jB0.

(9)

Equation (4) and the viscous terms of Equation (3) are also discretized by the second-order
central difference scheme. The difference form for time advance in Equation (3) is implicit,
which can be expressed as

E
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, V (n+1/2)� , (10)
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Figure 2. Area weighting scheme.

where f(v, U, V) denotes all the terms moved to the right side of Equation (3), U (n+1/2) and
V (n+1/2) denote the corresponding values at the (n+1

2)th time step, which are already obtained
at the prediction stage. Now the precision is of second-order in time and second- or third-order
in space, but the coefficient matrices of the deduced finite difference equations are of
nine-diagonal and of five-diagonal. Some more efficient numerical algorithms for solving such
kinds of broad band matrix equations must be developed.

The preconditioned conjugate gradient method (PCG) is a kind of most effective algorithms
for solving large broad band sparse matrix equations [15]. Its efficiency depends on the
preconditioner. A good preconditioner is a matrix M, which satisfies the following two
conditions: (1) the inverse of M can be easily obtained, and (2) the condition number of M−1A
should be much less than that of the original matrix A. The procedure of the PCG is as
follows:

X�X0

g�AX−b ; h�M−1g

d�−h ; d0�gTh

if d05o then stop

R : continue

h�Ad

t�d0/(dTh)

X�X+td

g�g+th

h�M−1g

d1�gTh

if d15o then stop

b�d1/d0; d0�d1

d�−h+bd

goto R.
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One of the popular preconditioners is the incomplete LU decomposition (ILU). A subscript
set SA={(i, j ): ai, j"0} is defined. If a LU decomposition is only carried out on those ai, j

whose subscripts belong to SA, this kind of decomposition is called an ILU decomposition.
Because of the sparseness of A, the number of the elements in SA is small. So the computation
cost of ILU is less than that of LU. If the neglected terms −air

r arj
r , (i, j )�SA are added to the

diagonal elements aii
r , a more effective modified version of ILU, the so-called MILU, is

formed. The procedure of MILU is as follows:
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Figure 3. Comparisons of the calculated streamline contours with the experimental visualization for Re=1000, (a)
a=0.5, t=3; (b) a=3, t=4.
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Figure 4. Comparisons of the calculated streamline contours with the experimental visualizations for Re=200, (a)
a=0.5, t=3; (b) a=3.25, t=5.

For (i, j )�SA, aij
r will appear in a lower triangular matrix L (iB j ) or an upper one U (i] j )

respectively. The inversion of the preconditioned matrix M=LU can be obtained through a
simple forward and backward substitution procedure.

The conjugate gradient method with MILU as its preconditioner, i.e. MILU-CG, has been
successfully applied to oil reservoir simulations, and shown that the calculation speed is about
seven or eight times faster than that of the LSOR [16]. Hence the MILU-CG method is used
here.

3.3. The 6ortex method

In domain V, the flow field is calculated by the VIC method. The amount of vorticity
transported from the inner domain to the outer one is determined by the vorticity flux across
the interface. The strength of a nascent discrete vortex, passing through the jth section of the
interface I during a time step Dt, may be expressed as

DGj=
&

j

vIUn dh · Dt, (11)

where Un is the normal velocity at the interface. After Dt, each nascent discrete vortex will be
located at
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Figure 5. Streamline and vorticity contours at different time instants for Re=1000, a=0.5.
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Figure 6. Streamline and vorticity contours at different time instants for Re=1000, a=1.
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!j(t+Dt)=j(t, I)+dj,
h(t+Dt)=h(t, j+1

2)+dh,
(12)
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In the outer region after Dt, the position of the old discrete vortex can be determined by
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Figure 7. Streamline and vorticity contours at t=24 for Re=200, (a) a=0.5; (b) a=1.
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Figure 8. Streamline and vorticity contours at different time instants for Re=1000, a=3.
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Figure 9. Streamline and vorticity contours at t=24 and 45 for Re=200, a=3.25.

where Up and Vp are velocities of the old discrete vortex. These velocities are obtained by using
an area weighting method as follows:

Í
Ã

Ã

Á

Ä

Up= %
4

k=1

ukAk/A,

Vp= %
4

k=1

6kAk/A,
(14)

where uk and 6k are flow field velocities on grid nodes, and A is the area of the cell occupied
by the vortex (see Figure 2). When the vortex with strength G reaches its new position, the
corresponding vorticity contribution to grid nodes is

vk=
G
Ek

Ak

A2, k=1, 2, 3, 4. (15)

The area weighting method is essentially a bilinear interpolation scheme, whose disadvan-
tage is having to account for grid effects. One way to reduce the influence of the grid is to use
other more accurate weighting functions or filters, e.g. the Couet filter, etc. [17]. But in the
computations here this kind of grid-dependence is not substantial as usual, because the VIC
method is just used in the outer domain’s calculations. The influence of the grid on the vortex
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shedding frequency, drag and lift forces is small when fine meshes are used in the calcula-
tions. The grid size used here is determined through numerical tests, by refining meshes
when the difference among the values of the drag and lift forces on the different sizes of
grids is B1%. So the calculated results may be regarded as almost grid-independent.

3.4. The computation procedure

The inner domain and the whole flow field are divided into fine and coarse grids
respectively. Both fine and coarse grids are applied simultaneously to the inner domain.
The computation procedure is as follows:

(1) Given the variables on the interface at the nth time step, solve the N–S equations on
the fine grid and obtain the vorticity distribution in V1.

(2) Calculate the nascent discrete vortex transferring into V2 and the movement of the
old discrete vortex already existing there. Obtain the vorticity distribution in V2.

(3) Solve the Poisson equation and obtain the streamfunction and the velocity distribu-
tions on the coarse grid.

(4) Calculate the vorticity, the streamfunction and the velocity distributions on the inter-
face.

(5) Solve the Poisson equation on the fine grid to obtain the streamfunction and then the
velocity distributions in V1. Calculate the vorticity distribution on the cylinder surface, as
well as the drag and lift forces.

Repeat the steps (1)–(5) to the end-time of the computation.

4. RESULTS AND DISCUSSION

The flows around an impulsively started rotating circular cylinder for a� (0.5, 3.25) with
Re=1000 and 200, are simulated respectively. Fine grids are applied to the inner domain,
where the total number of nodes is 144×240, and the corresponding domain on the
physical plane is a5r53a, u52p. Coarse grids are applied to the whole domain, where
the total number of nodes is 300×240, and the corresponding domain on the physical
plane is a5r5110a, 05u52p. The time step is Dt=0.01, and the end-time is t=80.

In Figures 3 and 4, the calculated streamline contours are compared with the experimen-
tal visualizations [1–3,6]. Figure 3 shows cases for Re=1000 with (a) a=0.5, t=3 and (b)
a=3, t=4. Figure 4 shows cases for Re=200 with (a) a=0.5, t=3 and (b) a=3.25,
t=5. The good agreements have verified the accuracy of the present numerical methods.

By changing a, different vortex patterns will be presented in the wake of the cylinder.
Figure 5 shows the streamline and vorticity contours at different times for Re=1000 and

a=0.5. The rotation of the cylinder creates asymmetry in the formation of the wake flow
behind it. The first clockwise negative vortex is formed and shed from the upper side of the
cylinder, then the second anti-clockwise positive vortex is formed and shed from the lower
side, and so on. A periodical alternate shed vortex pattern is presented in the wake, just
like the Von Karman vortex street in the stationary cylinder case (a=0). The streamline
contours are periodically fluctuated, and look like a traveling wave. Their central lines are
deflected upwards in the rotating direction. When a=1 (Figure 6), the steamline and
vortex evolution patterns are found to be basically the same as those for a=0.5, as are
those for the cases of Re=200, a=0.5 and 1 (Figure 7).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 229–248 (1999)
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Figure 8 shows the streamline and vorticity contours at different times for Re=1000 and
a=3. The increase in a tends to decrease the process of the anti-clockwise positive vortex
formation on the lower side of the cylinder. Now a is sufficiently large, and the development
of the vortex on the lower side is fully suppressed. The time taken for the first main vortex to
be shed from the upper side is longer than that for a51. After the first main vortex is shed,
the flow tends to steady. There are no other vortices shed from the cylinder besides the vortex
attached to the upper side. The wavy streamlines of periodic fluctuation cease to develop.
Some closed streamlines appear around the cylinder surface. After the first wave is passed, the
streamlines become flatter and are deflected upward more substantially. For the case of
Re=200 and a=3.25 (Figure 9), the situation is the same. These results are in agreement with
the experimental results in [1,3], and the numerical results in [7].

Figure 10. Vorticity contours at different time instants for Re=1000, in the critical state ac=2.2.
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Figure 11. Vorticity contours at different time instants for Re=200, in the critical state ac=2.

There should exist a transition state, the so-called critical state, between the state of
periodically alternate double side shed vortex pattern for smaller a and the state of steady
single side attached vortex pattern for larger a. The existence of the critical states, which was
indicated before [3,5,7], is confirmed here again. But so far, little is known about the flow
character and vortex patterns in the critical states. Through numerical tests, the critical speed
ratio ac is found to be 2.2 and 2.0 for Re=1000 and 200 respectively, and the character of the
vortex patterns in critical states are given for the first time. Figure 10 shows the vorticity
contours at different times in the critical state for ac=2.2 for Re=1000. The strength of the
vortex shed from the lower side is so decreased that the vortex does not need to be shown in
the plotting. But the vortex attached to the lower side still exists, having a periodical effect on
the evolution of the upper side vortex. After the first main vortex is shed, the upper side vortex
takes a shape like a ‘lotus root’, (not the flat shape as in the steady case shown in Figure 8).
As time advances, parts of the ‘lotus root’ will shed one after the other. This is similar to the
case of the single side shed vortex in [5], but now it takes place in the critical state, and not
in the steady state. For Re=200 (Figure 11), the vortex pattern in the critical state ac=2 has
a similar character.

The speed ratio a also has great influence on the drag and lift force coefficients. The
variations of the drag and lift force coefficients, Cd and Cl, with respect to time for Re=1000
and 200 are shown in Figures 12 and 13 respectively. When a is small (=0.5, 1), the curves
fluctuate with rather large amplitudes. The fluctuation frequencies for both Cd and Cl are the
same. This is different from the case of a stationary cylinder (a=0), where the frequency of
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Cd is twice that of Cl. When a is large enough (=3, 3.25), the curves tend to steady, and
achieve their approximate values. When a is close to its critical value (=2, 2.07), the
fluctuation amplitudes are very small, but the frequencies of Cd and Cl are still the same. One
contradiction with some other numerical results [2,3,7] is that there seems some degree of
negative Magnus effect during the early stage, which is called the overshoot phenomenon. This
phenomenon is presented in many numerical simulations of flow around impulsively started
translating cylinders, where the prediction of drag force during the early stage overshoots also.
The initial flow field for impulsively started flow is taken to be of potential and the vorticity
at t=0+ is concentrated on the body surface in the form of a vortex sheet with infinitesimal
thickness. Errors (overshoot phenomenon) are shown due to the inability of numerical schemes
to resolve such an infinitesimal vorticity layer at t=0+ [5]. Smaller initial time steps can be
used to confine and reduce these errors to small times during the early stage. For example, in
these calculations, Dt=10−4 is used for t50.3, Dt=10−3 for 0.35 t52, and Dt=10−2 for
the rest. But the overshoot phenomenon still exists. So, whether the overshoot phenomenon is
wrong or inherent and how to reduce it, need to be further investigated, especially by
experiments. On the other hand, according to [18] even in the worst case of a body set
impulsively into motion, the duration of the errors is confined to a limited time. This is
confirmed by the present numerical tests; therefore, the long-term behaviors predicted here are
not influenced by the errors. In Figure 14, the variations of (a) the mean drag force coefficient
Cd, (b) the mean lift force coefficient Cl and (c) the mean lift-to-drag force ratio Cl/Cd with
respect to a are shown. Cl increases almost linearly with increasing a. Cd also increases with

Figure 12. The variations of the drag and lift force coefficients, Cd and Cl, with respect to time t for Re=1000,
a=0.5, 1, 2 and 3.
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Figure 13. The variations of the drag and lift force coefficients, Cd and Cl, with respect to time t for Re=200, a=0.5,
1, 2.07 and 3.25.

increasing a, but the increase in speed before or after the critical state is different, the latter is
greater than the former. So, Cl/Cd may reach its maximum value. The calculated results show
that the maximum Cl/Cd will be obtained near the critical state. This indicates the importance
of studying the critical state of a rotating circular cylinder for the flow control problems.

5. CONCLUSIONS

(1) The speed ratio a has a dominant effect on the vortex patterns in the wake of a rotating
circular cylinder, along with the drag and lift forces.

(2) There exists a critical state. When aBac, a periodical alternate double side shed vortex
pattern occurs in the wake; the Cd and Cl fluctuate synchronously with time in rather large
amplitudes. When a\ac, a steady single side attached vortex pattern occurs; the Cd and Cl

approach their steady values. When a:ac, a lotus-root-like single side shed vortex pattern
occurs; the Cd and Cl fluctuate synchronously with time in very small amplitudes.

(3) The maximum lift-to-drag force ratio is obtained near the critical state.
(4) The modified HFDV method used here is an efficient and accurate numerical method

for calculating the separated flow around bluff bodies at moderate or high Reynolds numbers.
(5) For large broad band sparse matrix equations deduced from higher-order implicit finite

difference algorithms, a kind of efficient preconditioned conjugate gradient methods, e.g.
MILU-CG method, is recommended.
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Figure 14. The variations of (a) the mean drag force coefficient Cd; (b) the mean lift force coefficient Cl; (c) the mean
lift-to-drag force ratio Cl/Cd with respect to a for Re=1000 and 200.
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